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Abstract

In this paper, we propose an analytical model for
wormhole routing with the use of a timeout reset mech-
anism. This model is based on an M/G/1 queueing sys-
tem with impatient customers and feedback. Some ap-
prozimations are proposed and verified by simulation.
By comparing our analytical results to stmulation, we
show that the proposed model successfully captures the
performance characteristics of wormhole routing with
a timeout reset mechanism.

1 Introduction

Wormbhole routing is a widely studied algorithm
which has typically been applied to supercomputer
interconnection networks. Recently wormhole rout-
ing has been used as the switching scheme for Local
area networks (LANs). One such effort is Myricom’s
Myrinet [20], which has been adopted as the LAN in-
frastructure for the Supercomputer SuperNet (SSN), a
research project being conducted at UCLA, JPL and
Aerospace Corp. [14].

Many performance studies for wormhole routing
in a supercomputer environment have been carried out
and presented in the literature {1, 2, 5, 6, 9, 16]. How-
ever, many performance studies do not focus on the
LAN environment, which suffers link propagation de-
lay and has low-cost non-intelligent switches. More-
over, except for the simulation studies in [16], there is
no analysis work evaluating the timeout reset mecha-
nism, which is'not only a powerful technique to solve
potential deadlock problems but is also able to reduce
blocking and achieve significant performance improve-
ments for wormbhole routing.

In this paper, an analytical model for wormhole
routing with a timeout reset mechanism based on an
M/G/1 queueing system with impatient customers and
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feedback is proposed and verified. An exact analy-
sis of the link holding time distribution is developed
and expressed in terms of Laplace-Stieltjes transforms.
To derive solutions for these Laplace-Stieltjes trans-
forms, an approximation method which matches the
first two moments of the link waiting time (i.e., the
blocking time) is proposed. To test this model, we
performed some simulations to compare results as well
as to verify the approximations used in the model. The
only assumptions for those simulations are: exponen-
tial worm length, Poisson arrival, and that the band-
width required for control signals (e.g. timeout reset
signals) is negligible. The comparison results show that
our model is general enough to capture a spectrum of
networks using wormhole routing with timeout.

In section 2, we describe the basic network struc-
ture as well as wormhole routing. Then we develop the
analysis model in sections 3-6. In section 7, the re-
sults and comparisons with simulations are presented,
and a discussion of the accuracy of this model is given.
Finally, section 8 contains the conclusion and future
work.

2  Wormbhole routing

In general, we consider a network for which all
communication links are bi-directional and have the
same capacity. Packets are generated and absorbed
at hosts only. We assume that packet generation is a
Poisson process and packet length is exponentially dis-
tributed. We measure packet length by flits, which is
the amount of data that can be transmitted in one time
unit. For example, the 640Mbps Myrinet has one byte
per flit lasting 12.5ns. Source routing is employed be-
cause switches have no processing capability to main-
tain a routing table. A routing path, which specifies
the links that a packet will traverse in order, is gen-
erated by the source host and attached to the head
of the packet. Since switches have no intelligence (for
low cost) and specifically can do no adaptive routing,
hence routing paths don’t change except at hosts when
timeout retransmissions occur. An example network
configuration is shown in figure 1. Also, as shown in
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Figure 1: An example network configuration: 3 x 3
torus.

figure 1, we use “hs link”, “ss link” and “sh link” to
denote host-to-switch, switch-to-switch and switch-to-
host links, respectively.

Wormbhole routing is the basic switching technique
we study. Wormhole routing was first introduced in
[19]. It was developed from the earlier idea of cut-
through switching [10]. In wormhole routing, switches
have relatively small buffers. As opposed to store-
and-forward switching, as soon as a packet header (or
its routing information) is received, this packet is for-
warded to the next switch (before it is completely re-
ceived); if the outgoing link to the next switch is busy
serving another packet, our packet gets blocked and re-
sides in the switch until the outgoing link is available.
In this case, called blocking, the switch must inform the
previous up-stream switch to stop transmission (i.e., it
exercises back-pressure flow conitrol) due to the lim-
ited size of buffers. A packet (which is also called a
worm) might be buffered in several nodes along the
chain while stuck in the middle of the network due to
blocking. With wormhole routing, deadlocks are possi-
ble unless a deadlock-free routing strategy is employed.
A survey of wormhole routing can be found in [15].

Backward timeout reset is the basic mechanism we
study to solve deadlock problems. Whenever a worm
head reaches a switch, a timer starts counting how long
this worm resides at this switch while waiting for its
outgoing link to become available (thus advancing to
the next switch or host node). If this “residence time”
exceeds a timeout threshold, then a timeout event is
triggered; a switch at which timeout occurs will then
clear all buffers occupied by this worm and will issue
a timeout reset signal backward to the upstream node
from which this worm came. A switch which receives
a timeout reset signal will pass this signal further up-
stream and will also free the outgoing link and any
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buffer occupied by this timed-out worm. This pro-
cess continues until the timeout reset signal reaches
the source host where the worm was generated. (We
assume that a switch can always send the timeout reset
signal upstream even if the tail of the worm has already
left this switch). The source host, after receiving the
timeout reset signal, will stop the transmission of this
worm if the transmission is still in progress, and will
insert the worm back into the tail of this host’s packet
queue so that it will be retransmitted later.

In this study, the routing strategy is not specified.
It could be shortest-path routing or any deadlock free
routing. Also, the network topology could be regular
or arbitrary.

3 Traffic analysis

In this section, we systematically analyze the traf-
fic rate at each transmission link. The analysis is sim-
ply based on the timeout probability at each link and
the traffic arrival rates of all routing paths. For conve-
nience of presentation, we use the notation in table 1
throughout the paper.

Ny The total number of routing paths.

% The total external worm arrival rate.

by The probability that an external arrival
worm is routed to path p.

hy The length (number of hops) of path p.

l; Link 1.

lpi The ith link of path p; 1 <7 < h,. If the

ith link of path pis link k, then l,; = ;.
Ap ¢ The total worm arrival rate on path p.

Al The total worm arrival rate at link 1.

Api The arrival rate at link i of worms via
path p.

Pr,, The probability of timeout on link ;.

PT!,,,' The probability of timeout on link I,;.

Pp, The transmission failure probability of
path p; the probability that a worm on
path p will be timed-out in its current
transmission.

Pg, The transmission success probability of
path P PSP =1~ PFp

Ly The set of links which are traversed

along path p.

Table 1: The notation for traflic analysis.

We assume that there are N, possible paths in the
network, and that the arrival rate for path p is v6,.
Here, 7 is the total worm arrival rate to the network,
which we call the external worm arrival rate, and 6,



Random variables which denote the waiting time at [; and [, respectively.

Wi Wi

0’ A random variable which denotes the worm length.
Wi, (2) The probability distribution function (PDF) of wy,.
Wi (s) The Laplace-Stieltjes transform of Wy, (z).
Bspk (ZE)

The link holding time distribution for worms traversing path p at their kth link, given worms
successfully reach their destinations.
The Laplace-Stieltjes transform of Bs,, (x).

The link holding time distribution for worms traversing path p at their kth link, given that
these worms will suffer timeouts j hops from now.

The Laplace-Stieltjes transform of the link holding time distribution for worms traversing

The probability of transmission success for worms traversing path p, given that they are

j;k+1(1 - PT:,,J- )-
The probability of transmission failure j hops from now for worms traversing path p and
already on their kth link. Pp,, . = Pr, I3 1(1-Pr ).

}pw (s) : The Laplace-Stieltjes transform of Bp,,,.(z).
B (s)
path p at their kth link.
b, A random variable which denotes the link holding time of link <.
B, (x) The link holding time distribution of link <.
By (s) The Laplace-Stieltjes transform of By, (z).
L*(s) The Laplace-Stieltjes transform of the worm length distribution.
P,
already on their kth link. Ps, = Hh
PFkaJ

i=k+41

Table 2: The notation for link holding time distributions.

is the probability that the external arriving worm is
routed to path p. Since a worm may possibly timeout
during its transmission, in which case it will have to
be retransmitted later, we say we have a transmission
failure when a worm times-out, and similarly, a trans-
mission success when a worm successfully reaches its
destination.

If there is no timeout, no matter what the network
topology or routing strategy is, we can derive the ar-
rival rate at a particular link simply by summing up the
arrival rates on paths which traverse this link. With
the possibility of timeout, it still can be expressed as:

A, = Z Api (1)

Vp,li€L,

Now, let &,() be a function which returns & if link
i is the kth link of path p, or 0 if ; ¢ £,. With the
assumption that the probability of timeout at each link
is independent of the arriving worms, Ap; can easily be
derived as a product form of probabilities that a worm
does not suffer timeout at links prior to link ¢:

NOES! .
Ao =4 M ng(l) (I1—Pp ) ifliely
v 0 otherwise

To derive the total arrival rate on path p, we first
have to derive the transmission success probability Ps,,,
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and the failure probability Pr,. Since Ps, is simply the
probability that no timeout occurs, we have,

Ps, = H (1-Pr,)

V€L,

2)

and

PF,,:]-**PSP:]‘— H (1—Ple)
V€L,

®3)

By summing up the external arrival rate and the
timeout retransmissions, we get

Ao = ¥8p + 76 Pr, + 76, Pi + -
- Y%
Pg,
Finally, substituting these results into equation
(1), we get
£p(i)-1
~é 1 1— Pr, .
A= p Il T'”) 4)

Vp, €L, Mviteee, 1= Pr,)

The remaining unknown variable is Pr, . and Pp,
P2

(the probability of timeout at each link), which we con-
sider in section 4.
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Figure 2: The inter-arrival time distribution (by simulation) of a switch-to-switch outgoing link in a 7 x 7 torus
network. (average worm length = 100 flits, timeout = 100 time units, propagation delay = 20 time units)

4 Link Holding Time

Link holding time is the interval from when a worm
first grabs a link until this worm releases it. The no-
tation for link holding time and waiting time distribu-
tions are defined in table 2. Calculating the distribu-
tion of link holding time is difficult because of possible
blocking; link holding time is not only a function of
worm length but also depends upon the waiting time
(blocking time) for all links in the path, and this de-
pends on link holding time itself. Furthermore, the
timeout mechanism makes it more complicated since
the transmission may be aborted. Fortunately, the fol-
lowing observations allow us to find a good approxima-
tion to the distribution of link holding time:

o Simulation shows that the inter-arrival time distri-
bution at each outgoing link is nearly exponential
(e.g. a Poisson process) for a wormhole routing
environment, especially under heavy load (see fig-
ure 2). At light loads, simulations show that some
huge spikes caused by the timeout mechanism ex-
1st; except for these spikes, it is close to exponen-
tial. However, since the effect of blocking is not
significant at light loads, we believe that the Pois-
son arrival approximation is reasonablet.

One difficult problem in traditional store-and-
forward networks is the dependence between the
inter-arrival time and the service time (link hold-
ing time) at all links (except the host-to-switch
links). To solve this difficulty, we will use the
Kleinrock’s independence assumption [11], which
allows us to choose a new service time for each
packet received. This assumption works well in
our case because of the cut-through feature of

! Actually, the arrival is not a Poisson process, even though
the inter-arrival time is exponentially distributed. This is dis-
cussed In section 7.
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wormhole routing; namely, a worm can be for-
warded to the next node before it is completely
received. Therefore, a long (short) inter-arrival
time does not imply a long (short) link holding
time for the arriving worm in wormhole routing.
With Poisson arrivals and Kleinrock’s indepen-
dence dssumption, the process on a single link is
simply an M/G/1 queueing system with impatient
customers (also referred to as M/G/1 with reneg-
ing), a system that has been well studied (for ex-
ample, see [3, 4, 18]). Some elegant solutions to
these systems are available.

From simulation, we also found that the profile of
a link waiting time distribution is surprisingly sim-
ple (figure 3). This suggests the possibility of us-
ing some simple rational functions to approximate
the actual waiting time distribution. As shown in
figure 3, in some cases the density of waiting time
is almost a straight line.

Since a served worm releases a link only when it
sends out 1ts tail at this link or receives the timeout
backward reset signal, there are two cases for link hold-
ing time.

Successful case: If a worm successfully reaches its
destination, its link holding time is the time spent in
blocking (waiting) for the rest of its trip plus the worm
length (see figure 4). Therefore, we have the distribu-
tion function,

BSpk (13)

Prob {“’I,,Hl + Wiy + o
twr,, +€< :L'}
and, the Laplace-Stieltjes transform:

by
Bs, () =L(s) II wi,(s)
j=k+41

(®)
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Figure 3: The waiting time distribution (by simulation) for an ss outgoing link in a 7 x 7 torus network. (average

worm length = 100 flits, timeout = 100 time units)
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Figure 4: an illustration of the link holding time for a
successful transmission.

Timed-out case: When a worm suffers transmission
failure, it will hold a link until it times-out at this link,
or until its tail is sent out of this link before it re-
ceives the timeout signal. We assume that worms are
long enough so that we can ignore the situation where
the tail of a worm leaves a link before it receives the
timeout reset signal (i.e., the second case in the pre-
vious sentence). Then, we have that the link holding
time distribution, conditioned on the link where time-
out occurs, is the following:

Br,,.,(z) = Prob {7, + wi,y + T + Wlheys

+o Wi T T

pklj

T T Tz T F Tl < :c}

where 7; denotes the timeout interval and 7, repre-
sents the propagation delay of the kth link of path p.

The above equation is directly derived by observ-
ing figure 5. Consider a worm that will fail. After it
grabs a link, it forwards to the next node along with a
propagation delay. Then it waits for the next link to
become available so it can forward to the next node,
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etc., until it reaches the node where its timeout occurs.
At this timeout node, the worm head dwells there for
the timeout period, and then releases its holding links
by sending back the timeout reset signal, which again,
will suffer a series of propagation delays.

Assuming that both timeout and the propagation
delay are deterministic, we have the Laplace-Stieltjes
transform of Br,, .(z) directly from above results:

k+j5-1
* —s(T442 * —28T1_ .
Bray(9) =00 T Wi ()™ ™ (6)
i=k+1

From equations (5) and (6), and by unconditioning
on success or failure at j hops from now, we have,
hp—k

Ps,, B3, (s) + E Pr,,,B
j=1

*

pk

*
Fpry

(s) (s)

hp
1) TI [ = Pn,)we, ()]

i=k+1
e~s(n+2ﬁpk)] x

kdi-1

[T [t Pr, Wi, (s)e™ ]) (M)
i=k+1
Then, finally a link holding time distribution is
given through

Api

AL
VoL, U

By.(s) B, i)(s)

(8)

where —i—f simply gives the probability that an arriving
worm at link ¢ traverses path p.
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5 From holding time to waiting time

In section 4, we derived the link holding time dis-
tribution By (s), if Vj, W/’ (s) is known. Now, the re-
maining problem is to find link waiting time distribu-
tions.

As discussed at the beginning of section 4, the
queueing process at each outgoing link is close to an
M/G/1 queueing system with impatient customers.
Using the results for an M/G/1 queueing system with
deterministic reneging time developed in [4], the wait-
ing time distribution at link 7, given no timeout, is

(9)

di(z)
Wi (z) = {i»,-(n) 05””5”
z Tt

where ¢;(z) is a function which satisfies

* é * —sT ; = S¢i(0)
®;(s) _A e Tdgi(x) = 5 — A, .|_)‘,l.BI*‘_(s) (10)

and .
¢z(0) + Al;bli¢i(7t) =1 (11)
where b;, is the mean of b;, (the link holding time of
link 7). Note that ¢;(z) is not a distribution function.
Unfortunately, it is difficult to find Bj.(s) and
Wit (s) directly from equation (8) and the above equa-
tions. Therefore, the following approximation method
is suggested.

Two moment matching approximation: The ba-
sic idea is that any distribution function can be approx-
imated arbitrarily closely by a series-parallel stage-type
device [13]. As discussed at the beginning of section
4, it is reasonable to approximate a link waiting time
distribution by only a few exponential stages since it
has a very simple profile. Here, we choose to use a
single-stage approximation in which «; and f; must

be selected to match the first two moments of W (s).
Thus, we assume:

d¢diir) = aefe fore >0 (12)
@) = FA-eP) a0 (19)

Note that 3; may have a negative value since the uti-
lization factor, p, = A, by, can be greater than one in
deterministic reneging queueing systems [4].

Certainly, we may choose more stages to match
higher moments for a more precise approximation.
However, the approximation of a Poisson arrival pro-
cess plus the fact that the profile of link waiting time
distributions is simple, suggests that a more sophisti-
cated approximation with more stages is probably not
Jjustified.

From equation (9), we may calculate the (approx-
imated) first moment of the waiting time distribution
wy;, as

Wy, / edWi,(z)
0

Tz e P
= A
/o+ éi()
ai(l — e—.@iTt — ,31'7'16_-/3”-')
= 14
P23:(70) (14)

and similarly, we can derive the second moment of the
approximated Wy, ().

Now, ¢;(0) and ¢;(r;) are simply found from equa-
tions (11) and (13), to give us

/\I.E: - %‘L (1 - e—ﬁm)
1- )‘liE:

¢i(m) =1-
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)\1,»7)1—‘- [/\II.H - %: (1 —_ e_ﬁiﬂ)]
1- /\I,-H
Actually, ¢;(m) is exactly the probability that an
arriving worm will not suffer a timeout, and ¢;(0) is the
probability that an arriving worm finds link ¢ idle (no

blocking) [4]. Hence the timeout probability is given
by

$i(0) = 1= A;bi; +

M 8 (1 - )
1—¢i(m) = 1— b

Pr, = (15)

Remember that ¢;(z) is not a distribution func-
tion; fooo déi(z) is not necessarily equal to one. There-
fore, two moment matching is required to solve for o
and f;. From equation (8), by differentiating and set-
ting s = 0, we find the moments of By, (z) Vi, in terms
of the moments of Wi, () Vj. Using the series-parallel
stage approximation of Wy, (z) Vi, we can compute the
moments of the approximated Wy, (z) Vi (e.g. equation
(14)). Then, the moments of ¢;(x) Vi can be found
directly from equation (10). By forcing the moments
of ¢;(z)Vi found from above to be equal to the ones
directly derived from equation (13) (by definition of
the moments), we finally get a set (unfortunately, a
huge set) of equations in terms of a; and §;, Vi. Solv-
ing these equations together with equation (15) (the
probability of timeout) and equation (4) (the result of
traffic analysis), we obtain «; and f;, and then Pr, ,
i, Bi;(z) as well as W, (2)Vi. As usual, extensive nu-
merical calculations are required to iteratively find the
feasible roots that must be evaluated in this process

[13].
6 Host queueing time

The queueing process at a host is basically an
M/G/1 queueing system with feedback (see figure 6).
The exact solution for the waiting time distribution of
this queuneing system can be found in [7, 8, 17]. How-
ever, the exact solution is too complicated to be prac-
tical. Fortunately, what we are interested is only the
mean waiting time, and it can be derived simply by
changing the order of service (shown in figure 7) and
noting from the conservation law [12] that the mean
wait is the same for figures 6 and 7. Thus, we simplify
the host queueing process to a pure M/G/1 model.

The probability of feedback is the probability that
a transmission fails because of a timeout. Thus,

> vppep. 2o Ps, (16)
ZVP»PE'P‘. ’\P
1—Psgq, (17)

where P, is the set of paths that start at host a,
and Psgq,, Pr,, are the probabilities of transmission

Pan

)
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Figure 6: The queueing process at a host.

Figure 7: The simplified host queue model.

success and failure respectively, for all transmissions
started at host a.

Let by, , be a random variable representing the
service time of the nth try of a transmission for worms
from host a. Also, B, (z), B; (s) and By, (%),
B} (s) are the corresponding distribution functions
and the Laplace-Stieltjes transforms of the service time
for one try of a transmission in the original M/G/1 sys-
tem, and the total service time in the simplified pure
M/G/1 queueing model respectively. It is clear that
in the original M/G/1 system, the service time of one
transmission try is exactly the link holding time of the
connected host-to-switch link at this host. Therefore,
we have the service time distribution of one try di-
rectly:

Bl (s) = Bi(s)

if link ¢ is exactly the hs link that connects to host a.
For the simplified pure M/G/1 model, we have

By, (z) = Z Psqq P;,;slpr‘)b {bga,1+bgu 2+
n=1
+bgon < z}
and
=)
B}"un (5) = Z Ps'q“ P‘;y;al B;a (s)n
n=1

Ps .. B: (s
S,qa qa( ) (18)
1- PF,q,, B;a (8)
Now, by applying the Pollaczek-Khinchin (P-K)
mean-value formula [13], we get the mean total waiting
time,

’Y‘Za b’]‘?‘v

da

2(1 - pn,,) (19)

wNQa



where 7,, is the total external arrival rate at host
a, and v, = 2 vppep, 70p- The utilization factor,

PNey = Vo qua’ and qua’ blz\f.n
ond moments of By, (), which can be found directly
by differentiating Bj,. (s) and setting s = 0. Note that
we implicitly make an important assumption that each
try of a transmission has an independent service time
and independent failure or success, which is generally
not true. However to closely model the dependence of
service time between successive tries is far from trivial.
In section 7, we discuss more about this assumption.

At this point, we have developed the models and
approximations to derive bn,, , the mean total service
time for a transmission, and wWN,, , the mean total wait-
ing time in the host queue. The average network la-
tency (the mean time from when worm is generated
at the source host to the instant when the destination
node receives the whole worm) for path p traffic start-
ing at host a, Tq—a, is simply derived as:

Tqa = qua +bN9u + Z T]J‘
Vi, l;€L,

are the first and sec-

(20)

where ZVj,Ij ec, ;i simply counts the propagation de-
lay for the worm’s tail, after it leaves the source host,
to reach the destinated node.

7 Verification

In this section, we show results from the analytical
model and compare them to those obtained from simu-
lation. The comparison is for the 3 x 3 torus topology,
as shown in figure 1. Results with different timeout
values and worm lengths are shown in figures 8 and 9.

time units T T
Timeout

(= w1, analytical ~

2000 [ . 20, analytical
= ==~ 100, analytical _

3‘ 1500 [ - ©- - I, simulation

5 = 20, simulation
E 1000 -+ 100, simulation —
500 [ N

e it 1 1 1
0
0 5 10 15 20 flits
Throughput

Figure 8: Results of the analytical model with different
timeouts. (worm length = 100 flits, propagation = 1
time unit)

In figure 8, we find that the analytical results are
close to those from simulation, even at very high loads.
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|
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Figure 9: Results of the analytical model with different
worm lengths. (timeout = 20 time units, propagation
= 1 time unit)

Both the analytical and the simulation results point
out that a low timeout gives higher throughput.

Figure 9 shows the results for different worm
lengths. Again, results from the analytical model and
simulation are close over the whole performance spec-
trum. The analytical model successfully points out
that longer worms result in higher throughput but gen-
erate longer delays at low traffic loads. The maximum
throughput derived from the analytical model in both
figures 8 and 9 are within 10 percent of the simulation.
The delays are almost identical for both simulation and
analysis in light to moderate load regions; this is the
case when the worm length is short and the timeout
threshold is not too small.

If we look at figures 8 and 9 more closely, we find
that the analytical model always underestimates both
the average delay in the medium load region and the
maximum network throughput, as compared to the
simulation results. This difference is mainly due to
two assumptions in the model: the independence as-
sumption between successive retransmissions for the
host queueing time analysis, and the Poisson arrival
process for each output link.

As mentioned in section 6, we made an important
agsumption regarding the host queueing time analysis.
Namely, we assumed that the result of a worm’s time-
out retransmission is independent of the worm’s previ-
ous transmission attempt. Certainly, this assumption
is false, especially when the worm length is long and
the timeout is small. In fact, for each value of time-
out, a worm, if it is retransmitted immediately, is very
likely to get blocked again at the same place where it
timed-out in the previous try. Therefore, the probabil-
ity of getting timed-out or suffering blocking is much



higher than for the assumed independent case. This
clearly results in an underestimate of delay in our an-
alytical model. Because a long worm implies a longer
link holding time and a small timeout makes the re-
transmission instants closer to each other, the depen-
dency is stronger in the above cases. This explains why
the delay is underestimated in figures 8 and 9, when
the worm is long or the timeout is very short.

However, the dependency between successive re-
transmission does not affect the maximum throughput.
Since the host queues build up quickly when the offered
load is close to the saturation point, the retransmission
of a timed-out worm occurs far later than the timeout
instant due to the huge waiting time in the host queue.
Hence, the dependence of these two instants is broken,
and the maximum throughput is not changed by this
dependence of successive retransmissions.

In figure 10, we see the results when we add a
constant delay for all retransmissions. This constant
delay simply relaxes the dependence between the time-
out and retransmission instants, and therefore, as we
can see from the figure, the difference between ana-
lytical and simulation results is diminished in the de-
layed retransmission case. Nevertheless, the maximum
throughput is not changed.
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6000 Analytical, no delay oA -

bl w4+ Simulation, delay=300 s
2 5000 |- 1 n

5 -~ - Analytical, delay=300 / o
@ 4000 ", I

-
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2000 I
1000 7
0
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Figure 10: Results of delayed retransmission. (worm
length = 500, timeout = 20, propagation = 1)

The reasons for the underestimated maximum

throughput are mainly from the following:

¢ The buffer effect is not modeled in the analyti-
cal model. In the actual switches and in the simu-
lation, there is a minimum buffer which stores the
data currently being propagated across the link.
This buffer absorbs part of the worm and conse-
quently reduces the blocking, especially, when the
propagation delay is non-negligible. As shown in
figure 11, with a larger buffer and a longer prop-
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agation delay, there is a great difference between
the analytical model and the simulation result.
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0 1
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Throughput
Figure 11: The buffer effect on network performance.

(worm length = 100, timeout = 20)

e A major error is introduced by the assumption
of a Poisson arrival process at each link. From
the simulation, as shown in section 4, we already
found that the inter-arrival time of worms is close
to an exponential distribution. However, the ar-
rival process is dependent on the link status. It
is clear that for an 8 x 8 switch, there can be at
most 7 worms requesting the same link (assuming
that no worm will try to leave on the same link as
which it entered a switch). If we simply use expo-
nential distribution for the link holding time, then
the queueing process of each link is Markovian
as shown in figure 12. The actual worm arrival
rate decreases as the number of worms waiting for
this same link increases. It can be shown that the
above Markov process has the same inter-arrival
time distribution as the Poisson assumption; how-
ever, it results in less average waiting time before
getting service (figure 13). Thus, the link holding
time and hence the timeout probability is overesti-
mated in our analytical model. Consequently, the
maximum throughput is underestimated.

A (K-1) & (K-2) &

Figure 12: An illustration of the actual queueing pro-
cess on an output link.
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Figure 13: The comparison of the state probabilities for
a pure M/M/1 and an M/M/1 with finite population.
(utilization = 0.7, 8 x 8 switch)

8 Conclusion and Future Work

In this paper, we have developed a sophisticated
analytical model, for wormhole routing with timeout
reset. This model captures the whole spectrum of net-
work performance as demonstrated by comparison to
simulation results, and is general for any kind of net-
work configuration. However, it is fairly complicated;
extensive numerical calculations are required to itera-
tively find the solutions.

Many improvements and modifications are cur-
rently being considered for this analytical model. First,
we are working on extending this model to include the
effect of buffers, so it can closely describe the behavior
of networks with non-negligible input buffer sizes. Sec-
ond, the modifications of this model to account for the
arrival process at links and the dependence between
successive retransmissions are planned. Finally, we are
seeking a simpler model more suitable for practical ap-
plications.
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